首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   4篇
  国内免费   6篇
测绘学   1篇
大气科学   5篇
地球物理   42篇
地质学   38篇
海洋学   30篇
天文学   8篇
自然地理   5篇
  2021年   1篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2015年   3篇
  2014年   11篇
  2013年   3篇
  2012年   3篇
  2011年   4篇
  2010年   6篇
  2009年   2篇
  2008年   5篇
  2007年   6篇
  2006年   6篇
  2005年   6篇
  2004年   10篇
  2003年   2篇
  2002年   7篇
  2001年   7篇
  2000年   3篇
  1999年   4篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1973年   2篇
排序方式: 共有129条查询结果,搜索用时 281 毫秒
11.
We have constructed a large, mosaic CCD camera called MOA-cam2 which has 4096 × 6144-pixelsto search for gravitational microlensing events. MOA-cam2 has three4096 × 2048-pixel SITe CCD chips, which have a very high quantum efficiency (nearly 80% in the wave region 500 to 800 nm),and three buttable sides. We have placed the threechips side by side with 100 m dead space. MOA-cam2 has been installed on the 61 cm Boller and Chivens telescope of the MOA collaboration at the Mt. John University Observatory (MJUO) in NewZealand since July 1998. The field coverage is 0.92° × 1.38° per exposure. The technical details of MOA-cam2 and the first images obtained with the Boller and Chivens telescope are presented. MOA-cam2 introduces a second phase of research on gravitational microlensing by the MOA collaboration.  相似文献   
12.
The Timor–Tanimbar islands of eastern Indonesia form a non-volcanic arc in front of a 7 km deep fore-arc basin that separates it from a volcanic inner arc. The Timor–Tanimbar Islands expose one of the youngest high P/T metamorphic belts in the world, providing us with an excellent opportunity to study the inception of orogenic processes, undisturbed by later tectonic events.Structural and petrological studies of the high P/T metamorphic belt show that both deformation and metamorphic grade increase towards the centre of the 1 km thick crystalline belt. Kinematic indicators exhibit top-to-the-north sense of shear along the subhorizontal upper boundaries and top-to-the-south sense in the bottom boundaries of the high P/T metamorphic belt. Overall configuration suggests that the high P/T metamorphic rocks extruded as a thin sheet into a space between overlying ophiolites and underlying continental shelf sediments. Petrological study further illustrates that the central crystalline unit underwent a Barrovian-type overprint of the original high P/T metamorphic assemblages during wedge extrusion, and the metamorphic grade ranged from pumpellyite-actinolite to upper amphibolite facies.Quaternary uplift, marked by elevation of recent reefs, was estimated to be about 1260 m in Timor in the west and decreases toward Tanimbar in the east. In contrast, radiometric ages for the high P/T metamorphic rocks suggest that the exhumation of the high P/T metamorphic belt started in western Timor in Late Miocene time and migrated toward the east. Thus, the tectonic evolution of this region is diachronous and youngs to the east. We conclude that the deep-seated high P/T metamorphic belt extrudes into shallow crustal levels as a first step, followed by doming at a later stage. The so-called ‘mountain building’ process is restricted to the second stage. We attribute this Quaternary rapid uplift to rebound of the subducting Australian continental crust beneath Timor after it achieved positive buoyancy, due to break-off of the oceanic slab fringing the continental crust. In contrast, Tanimbar in the east has not yet been affected by later doming. A wide spectrum of processes, starting from extrusion of the high P/T metamorphic rocks and ending with the later doming due to slab break-off, can be observed in the Timor–Tanimbar region.  相似文献   
13.
One possible approach to estimating the time interval between large-scale Tōnankai (Tōkai) and Nankai earthquakes on the Japan arc is sequential assimilation of crustal deformation data. We conducted numerical modeling of sequential assimilation using surface deformation calculated from earthquake generation cycle simulations along the Nankai Trough. To account for observation noise, we used measured ocean bottom pressure gauge data, excluding tidal modulation, from a station on the ocean bottom cable network Dense Oceanfloor Network System for Earthquakes and Tsunamis in the Kumano basin. We used sequential importance sampling as our data assimilation method. We found that as the amount of data increased, the estimated time interval between the Tōnankai and Nankai earthquakes approached the “true” observed interval. In addition, the noise in the pressure gauge data was sufficiently small that simulated crustal deformation patterns could be distinguished for different time intervals.  相似文献   
14.
We studied the relationships between streamwater chemistry and the topography of subcatchments in the Dorokawa watershed in Hokkaido Island, northern Japan, to examine the use of topography as a predictor of streamwater chemistry in a watershed with relatively moderate terrain compared with other regions of Japan. Topographic characteristics of the Dorokawa watershed and its subcatchments were expressed as topographic index (TI) values, which ranged from 4·5 to 20·4 for individual grid cells (50 × 50 m2), but averaged from 6·4 to 7·4 for the 20 subcatchments. Streamwater samples for chemical analyses were collected four times between June and October 2002 from 20 locations in the watershed. The pH of water that passed through the watershed increased from ~5·0 to 7·0, with major increases in Na+ and Ca2+ and marked decreases in NO3? and SO . Distinctive spatial patterns were observed for dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and NO3? concentrations of streamwater across the watershed. Statistical analyses indicated significant linear relationships between the average TI values of subcatchments and DOC, DON, and NO3? concentrations. Furthermore, the proportion of DOC in streamwaters in the wet season increased with TI values relative to other nitrogen species, whereas NO3? concentrations decreased with TI. The gradients of soil wetness and the presence of wetlands explained many of the observed spatial and temporal patterns of DOC, DON, and NO3? concentrations in the surface waters of the Dorokawa watershed. Our results suggest that the TI is especially useful for predicting the spatial distribution of DOC, DON and NO3? in the surface waters of Hokkaido, where topographical relief is moderate and wetlands more common than in other regions of Japan. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
15.
Metamorphic garnet commonly contains needle‐like rutile inclusions as well as equant rutile inclusions that surround quartz inclusions and range in size from submicrometer to nanometer. Although the origin of these equant rutile inclusions, that is, exsolution or non‐exsolution, has important implications for petrological and tectonic processes, the crystallographic characteristics of these inclusions have rarely been studied because of the small sizes and analytical difficulties involved. Here, we report the crystallographic characteristics pertinent to the genetic origin of minute equant rutile inclusions in cloudy, nearly spherically shaped garnet domains with Ti‐depleted compositions surrounding quartz inclusions in ultrahigh‐pressure garnet from several diamondiferous Erzgebirge quartzofeldspathic gneissic rock samples. TEM analyses show that the equant rutile crystals in cloudy garnet domains are partially bounded by the low‐energy {100}rt ± {110}rt ± {101}rt facets and have rather random crystallographic orientation relationships (CORs) with the garnet host, with preferential alignment of low‐energy lattice planes, for example, {100}rt//{112}grt, for some rutile crystals. Although the rather random CORs are unlikely to be attributed to solid‐state exsolution subjected to the stringent topotactic garnet lattice constraints, the characteristic subhedral {100}rt ± {110}rt ± {101}rt crystal forms of rutile can be rationalized by a metasomatic dissolution‐reprecipitation mechanism via a fluid phase. In this scenario, the quartz+fluid inclusions in garnet were first subjected to decompression microcracking during rock exhumation, followed by dissolution of Ti‐bearing garnet matrix at the crack tips or along the crack surfaces and subsequent reprecipitation of rutile, apatite, gahnite, akdalaite, and Ti‐depleted garnet. The rapid coalescence between rutile and garnet crystals in fluid or direct attachment of rutile crystals onto the dissolving crack surfaces would then yield the rather random CORs as reported here. These results, along with previous work on rutile needles, indicate rather diverse genesis of rutile inclusions in various crystal forms, thus shedding light on the controversial exsolution origin for other inclusion suite/microstructure in minerals.  相似文献   
16.
Yamaura  Tsuyoshi  Kajikawa  Yoshiyuki 《Climate Dynamics》2017,48(9-10):3003-3014

A decadal change in activity of the boreal summer intraseasonal oscillation (BSISO) was identified at a broad scale. The change was more prominent during August–October in the boreal summer. The BSISO activity during 1999–2008 (P2) was significantly greater than that during 1984–1998 (P1). Compared to P1, convection in the BSISO was enhanced and the phase speed of northward-propagating convection was reduced in P2. Under background conditions, warm sea surface temperature (SST) anomalies in P2 were apparent over the tropical Indian Ocean and the western tropical Pacific. The former supplied favorable conditions for the active convection of the BSISO, whereas the latter led to a strengthened Walker circulation through enhanced convection. This induced descending anomalies over the tropical Indian Ocean. Thermal convection tends to be suppressed by descending anomalies, whereas once an active BSISO signal enters the Indian Ocean, convection is enhanced through convective instability by positive SST anomalies. After P2, the BSISO activity was weakened during 2009–2014 (P3). Compared to P2, convective activity in the BSISO tended to be inactive over the southern tropical Indian Ocean in P3. The phase speed of the northward-propagating convection was accelerated. Under background conditions during P3, warmer SST anomalies over the maritime continent enhance convection, which strengthened the local Hadley circulation between the western tropical Pacific and the southern tropical Indian Ocean. Hence, the convection in the BSISO over the southern tropical Indian Ocean was suppressed. The decadal change in BSISO activity correlates with the variability in seasonal mean SST over the tropical Asian monsoon region, which suggests that it is possible to predict the decadal change.

  相似文献   
17.
18.
Scoria cones are common volcanic features and are thought to most commonly develop through the deposition of ballistics produced by gentle Strombolian eruptions and the outward sliding of talus. However, some historic scoria cones have been observed to form with phases of more energetic violent Strombolian eruptions (e.g., the 1943–1952 eruption of Parícutin, central Mexico; the 1975 eruption of Tolbachik, Kamchatka), maintaining volcanic plumes several kilometers in height, sometimes simultaneous with active effusive lava flows. Geologic evidence shows that violent Strombolian eruptions during cone formation may be more common than is generally perceived, and therefore it is important to obtain additional insights about such eruptions to better assess volcanic hazards. We studied Irao Volcano, the largest basaltic monogenetic volcano in the Abu Monogenetic Volcano Group, SW Japan. The geologic features of this volcano are consistent with a violent Strombolian eruption, including voluminous ash and fine lapilli beds (on order of 10?1 km3 DRE) with simultaneous scoria cone formation and lava effusion from the base of the cone. The characteristics of the volcanic products suggest that the rate of magma ascent decreased gradually throughout the eruption and that less explosive Strombolian eruptions increased in frequency during the later stages of activity. During the eruption sequence, the chemical composition of the magma became more differentiated. A new K–Ar age determination for phlogopite crystallized within basalt dates the formation of Irao Volcano at 0.4?±?0.05 Ma.  相似文献   
19.
Complex rocks, consisting of different lithologic breccias and sediments in the Tungho area of the southern Coastal Range, eastern Taiwan, were formed by magmas and magma–sediment mingling. Based on field occurrences, petrography, and mineral and rock compositions, three components including mafic magma, felsic magma, and sediments can be identified. The black breccias and white breccias were consolidated from mafic and felsic magma, respectively. Isotopic composition shows these two magmas may be from the same source. Compared to the white breccias, the black breccias show clast-supported structures, higher An values in plagioclase, higher contents of MgO, CaO, and Fe2O3 and lower SiO2, greater enrichment in the light rare earth elements (LREE), and depletion in the heavy rare earth elements (HREE). The white breccias show matrix-supported blocks and mingling with tuffaceous sediments to form peperite. Physical and chemical evidence shows that the characteristics of these two components (mafic and felsic magmas) are still apparent in the mingled zone. According to their petrography, mafic and felsic magmas did not have much time for mingling. White intrusive structures and black flow structures show that mingling occurred before they solidified. Finally, the occurrence of mingling between magmas and sediments suggests that the mingling has taken place at the surface and not in the magma chamber.  相似文献   
20.
Toshihiro  Ike  Gregory F.  Moore  Shin'ichi  Kuramoto  Jin-Oh  Park  Yoshiyuki  Kaneda  Asahiko  Taira 《Island Arc》2008,17(3):358-375
Abstract   When seamounts and other topographic highs on an oceanic plate are subducted, they cause significant deformation of the overriding plate and may act as asperities deeper in the seismogenic zone. Kashinosaki Knoll (KK) is an isolated basement high of volcanic origin on the subducting Philippine Sea Plate that will soon be subducted at the eastern Nankai Trough. Seismic reflection imaging reveals a thick accumulation of sediments (∼1200 m) over and around the knoll. The lower portion of the sedimentary section has a package of high-amplitude, continuous reflections, interpreted as turbidites, that lap onto steep basement slopes but are parallel to the gentler basement slopes. Total sediment thickness on the western and northern slopes is approximately 40–50% more than on the summit and southeastern slopes of KK. These characteristics imply that the basal sedimentary section northwest of KK was deposited by infrequent high-energy turbidity currents, whereas the area southeast of KK was dominated by hemipelagic sedimentation over asymmetric basement relief. From the sediment structure and magnetic anomalies, we estimate that the knoll likely formed near the spreading center of the Shikoku Basin in the early Miocene. Its origin differs from that of nearby Zenisu Ridge, which is a piece of the Shikoku Basin crust uplifted along a thrust fault related to the collision of the Izu–Bonin arc and Honshu. KK has been carried into the margin of the Nankai Trough, and its high topography is deflecting Quaternary trench turbidites to the south. When KK collides with the accretionary prism in about 1 My, the associated variations in sediment type and thickness around the knoll will likely result in complex local variations in prism deformation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号